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Abstract-A stress jump is incident on a line crack in an elastic solid. At the instant that the crack
tip is struck, the crack starts to propagate with a constant velocity CF in the forward direction, but
under an angle IC1t with the plane of the original crack. In the time interval before signals from
the other crack tip arrive, approximate expressions have been obtained for the elastodynamic
stress intensity factors of the kinked crack. The approximation is based on the assumption that
the near-tip field for a kinked crack can be approximated by the field for a crack propapting
in its own plane, provided that the new crack faces are subjected to appropriate surface tractions.
For the Mode-III case the approximation of the elasto-dynamic stress intensity factor for the
kinked crack can be checked by comparisons with exact results. The range of kinking angles and
crack-tip speeds for which the approximation gives good results turns out to be surprisingly large.
For the Mixed Mode I-II case comparisons with numerical results have been carried out, and
satisfactory agreement has been obtained. The elastodynamic stress intensity factors have been used
to compute the corresponding fluxes of energy into the propagating crack tip. For a specified angle
of incidence the energy flux into the crack tip shows a distinct maximum at a specified combination
of crack-kinking angle and crack-tip speed.

INTRODUCTION

When a stress pulse strikes a crack, the crack may be induced to propagate, but not
necessarily in it's own plane. In earlier papers, see, e.g.[l], it has been attempted to explain
kinking of a crack at finite kinking angles. In the present paper we reconsider the
two-dimensional configuration of an initially stationary semi-infinite crack which kinks
under an angle K7t with it's original plane. We discuss earlier results for Mode III, and we
propose a way to approximate the elastodynamic stress intensity factors for the Mixed
Mode I-II case.

The tip of the kinked crack is assumed to propagate at a constant velocity CF' and
kinking is initiated at an angle K1t at the instant that an incident stress wave first strikes
the original crack tip. These two assumptions render the solution self-similar. Three cases
are considered corresponding to incidence of either an anti-plane transverse wave, an
in-plane transverse wave or a longitudinal wave. The elastodynamic stress intensity factors
have been computed as functions of the crack tip speed, CF' the kinking angle, K1t, and the
angle of wave incidence iX1t. For a given angle of incidence, the elastodynamic stress
intensity factors have been used to compute the corresponding energy fluxes into the
propagating crack tip.

Mode-III problems of the kind formulated in this paper can be solved rigorously. For
a bifurcating crack two special cases were solved in [2]. Corrected results for Mode-III
kinking under an arbitrary angle were given in [3]. The corresponding mixed Mode I-II
problems have, however, as yet eluded a rigorous analytical solution. A numerical
approach both for the Mode-III and the mixed Mode I-II cases has recently been given
by Burgers[4, 5].

For a kinked crack geometry the total field can be considered as the superposition
of the field generated by diffraction of the incident wave by a stationary semi-infinite crack
and the solution to a superposition problem. The problem for the stationary crack can
be analyzed by the use of integral transforms together with an application of the
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Wiener-Hopf technique and the Cagniard-de Hoop method. A detailed description of the
approach can be found in Ref. [6]. The superposition problem concerns an initially
quiescent solid which contains a semi-infinite crack. At time t =0 a branch emanates from
the crack tip, and at the same time the new crack faces are subjected to crack-face tractions
which are opposite in sign to the stresses computed from the stationary crack problems.
The superposition of the fields from the stationary crack problem and the superposition
problem renders the faces of crack-kink free of tractions. The singular stresses at the new
crack tip equal those from the superposition problem.

For the mixed Mode I-II problems we propose a simple approximation to the solution
of the superposition problem. The approximation is based on an observation from the
exact Mode-Ill solution of the analogous superposition problem, that for an important
range of kinking angles the elastodynamic stress intensity factor of the kinked crack is
affected more by the dependence on /( of the loading on the new crack faces than by the
wedge geometry at the original crack tip. This observation then suggests that in first
approximation we may ignore the wedge geometry altogether, and we may compute
elastodynamic stress intensity factors by considering a crack propagating in its own plane
but where the new crack faces are subjected to tractions corresponding to the kinking
crack.

For the Mode-III case the approximation of the elastodynamic stress intensity factor
for the kinked crack can be checked by comparisons with exact results given by Dempsey
et al. [3]. The range of kinking angles /(n for which the approximation gives good results
turns out to be surprisingly large. For the mixed Mode I-II case comparisons with the
numerical results of Ref. [5] have been carried out, and satisfactory agreement has been
obtained. No rigorous mathematical proof of the approximation's validity is given in this
paper. It is, however, to be expected that the results correspond to the first order terms
in a perturbation procedure for small kinking angle.

The results of this paper suggest that the approximation could be used to analyze crack
kinking at gradually increasing angles and at time-varying crack tip speeds. Solutions for
crack propagation in the plane of the crack at varying velocity and with arbitrary
crack-face loading can be found in the literature; these solutions have been reviewed by
Achenbach[7] and Freund[8].

FORMULATION OF THE CRACK KINKING PROBLEM

The incident wave strikes the crack tip at t = 0, at which time the crack starts to
propagate at a constant velocity CF, under an angle /(n with the plane of the crack, thus
producing a kinked crack. We concern ourselves with the cases of CF < Cr for Mode III
crack propagation and CF < CR for mixed Mode I-II crack propagation, where Cr and CR
are the velocities of transverse waves and Rayleigh surface waves, respectively.

Mode-Ill crack kinking (incident TH-wave)
We first consider that the incident stress wave is of the form

where

Tr = t + (x ICr) sin oen - (y ICr) cos a.n = t + (r ICr) sin (a.n - 8),

(1)

(2)

and a., rand 8 are defined in Fig. I. For diffraction of a step-stress wave by a stationay
semi-infinite crack the stress fields depend on rIt and 8, rather than on r, 8 and I separately.
We find for r < crt:

where

O"~ = 0"0 cos (a.n - 8)

O"~= -I:x:sin 181 +I:y:cos8

(3a)

(3b)

(3c)
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aTT

Fig. 1. Geometry of wavefronts for a kinking crack. for an incident horizontally polarized
transverse wave; tilt =angle of incidence. KIt is kinking angle. c,= crack-tip speed.

In (3c)

f
er I

1:y: = - O'c cos (an) 2 Aylv, 9) dv
"t V

where

and
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(4a)

(4b)

(Sa)

(Sb)

(6)~rtV,O)= -~COsO+isin 10{GY -slT2.
Here s;= I/cr is the slowness of the transverse wave. The branch cuts have been taken
as along the Re(~T) axis from ~T-- oc to ~T= -ST and ~T=ST to ~T-OC.

For the superposition problem, the conditions on the crack faces are:

o= ± n, r > 0: 0'8: =0

0= len ± 0, 0 < r < cpt: 0'8: = - O'::(r/I, K7t).

The fields for horizontally polarized transverse motions only are governed by:

V2 I._
u: =-2 U:,

CT

(7)

(8)

(9)

where u:(r,O, I) is the out-of plane displacement, (') = 0101 and V2 is the two-dimensional
Laplacian.

Mixed Mode /-1/ crack kinking (incident L-wave and/or TV-wave)
A complete statement of the equations which govern the elasto-dynamic fields is given

in Ref. (6]. In the usual manner the displacement components are expressed in terms of
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where q,(x,y, t) and t/I(x,y, t) satisfy uncoupled wave equations:

(lOa, b)

V2q, = ~q;. 2 A. + 2J.L (Ila, b)cL =--;
CL P

V2t/1 =~t/i, 2 J.L (12a, b)CT =-.
CT P

First, the incident wave is taken as a longitudinal (tension) wave of the fonn:

(13)

where

tL = t + (x ICL) sin lX1t - (y IcJ cos lX1t = I + (r ICL) sin (lX1t - 8). (14)

The str:ss components q,i" and q:;' corresponding to the stationary crack problem are, for
r < cLI,

(l5a, b)

where

q~ = - qo(cTlcd sin 2(lX1t - 8) (l6b)

q/'G, 0) = tI ./ + I/) - ~(I/ - I/) cos 28 - r~.. sin 1281 (l6c)

q;,{~, 8) = [ - tIxL-I/) sin 1281 + I~xcos 28] sgn (8). (l6d)

In (l6c, d)

where for y = a, s:

(18)

Also

A..1·'(V, 8) = Im[(sl- 2eL2)(sl- 2sL
2+ 2el)(SL2- eL2)- 1/2HL(eL' cL)] (l9a)

A)"(V, 8) =Im[(sl- 2eL2)2(sl- eL2) -1/2HL(eLo cL)] (19b)

A~~'(V, 8) =Im[ - 2f"L(sl- 2el)HL(f"L' eJ] (l9c)

A..1,,,(v. 8) =Im[ - 2eL(ST2- 2sl + 2eL2)H-r<eL. cL)] (19d)
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Ayl.a{v, 0) =Im[ - 2eL{sl- 2eL2)Hrtev CL)] (lge)

A;~a{v, 0) = Im[4eL2{sL2- el)I/2Hr<eL' CL)] (l9t)

Ax2··'{V, 0) = Im[ - 4el{sl- el),,2HL{er. cd] (l9g)

A/"{v, 0) =Im[4el(sl- ei)'/2H,.(er, (\)] (19h)

A;::{v, 0) =Im[2ertsl- 2el)HL{er. cL)] (l9i)

Ax2.
a{v, 0) =Im[ - 2ertsl- 2el)Hrter. CL)] (19j)

•A/·a{v, 9) = Im[2ertsl- 2el)Hrter. cd] (19k)

A;.a{v, 9) =Im[(sl- 2el)2{sl- el)-I/2Hrte,., CL)] (191)

and

while ertV, 9) is defined by eqn (6).
The function Ha{e, w), a = L, T is defined as

H I (sa - e)1/2(S. + I Iw )1/2
a{e, w) =2x{sl- SL2) {e - Ilw){e - SR)r-(e)(SR + Ilw)r_( - Ilw)

de
'--

d{llv)

where

(20)

(21)

(22)

In eqns (19), CL = cJsin (ax) is the apparent wave speed along the crack faces of the
incident L-waves; Sb ST and SR are the slownesses of longitudinal, transverse and Rayleigh
waves, respectively. The branch cuts have been taken along the Re{eL) axis from eL .... - ex:>
to eL= -SL and eL=SL to 'L.... ex:>·

For the superposition problem, the conditions on the crack faces are:

8= ±x, r > 0: tT8 =0 (24a)

tTer = 0 (24b)

9 = KX ±0, 0 < r < c,..t: tTo = - tTo"{rII, K7C) (25a)

tT8r = - tT:'(rll, K7C). (25b)

Next, we consider the case that the incident wave is a vertically polarized transverse
wave of the form:

(26)

where Tr is defined by eqn (2). For the superposition problem the corresponding conditions
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8 = ± 1t, r > 0; a8 = 0

ao, =0

O=K1t ±O, O<r <eft: a" = -ati"(r/t'''1t)

ao, = -a~,(r/t, ,,1t)

where a/' and a~, are defined by (15a, b), but

aoinG' (J) = ao sin 2(a1t - (J)

a~{~, (J) =aocos 2(a1t - 6)

in (29c, d)

r.~ = - aosin (2a1t) . Aij - ao cos (2a1t) Aij sgn (8).

(27a)

(27b)

(28a)

(28b)

(29a)

(29b)

(29c)

(29d)

(30)

Here A~, "I =s, a, is defined by eqn (18), except that in (l9a-I), the apparent wave speed
CL should be replaced by the apparent wave speed CT = cr/sin(a1t). The boundary
conditions (7}-(8), (24}-(25) and (27}-(28), together with the relevant governing equations,
and the initial condition that the solid is at rest for t < 0, define initial-boundary-value
problems which are very difficult to solve.

APPROXIMATE SOLUTION FOR MODE-III CRACK KINKING

The Mode-III crack kinking problem has been solved in Ref. [3) by taking advantage
of the self-similarity of the particle velocity. A crucial step in the analysis of Ref. [3) is the
use of Chaplygin's transformation, which reduces the problem to the solution of Laplace's
equation in a semi-infinite strip containing a slit. The Schwarz-christoffel transformation
can then be employed to map the semi-infinite strip on a half-plane, and an analytic
function in the half-plane which satisfies appropriate conditions along the real axis, can
subsequently be constructed. In Ref. [3) the Mode-III stress intensity factor at the tip of
the kinked crack has been computed for angles of incidence varying from normal to
grazing incidence, for angles of crack kinking defined by - 0.5 $ " $ 0.5, and for arbitrary
subsonic crack tip speeds.

In terms of the superposition problem defined by the boundary conditions (7) and (8),
there are two main reasons for differences between the stress intensity factors for a kinked
crack and a crack which propagates in its own plane. These are firstly the different loading
on the new crack faces, as expressed by eqn (8) for" :F 0 and" =0, respectively, and
secondly the wedge geometry of the kinked crack at the original crack tip. The drastic
assumption can now be made that the difference in loading on the kinked crack faces has
the greater effect, at least as far as the near-tip fields are concerned. This assumption then
implies that the stress intensity factor for a kinked crack can be approximated by the stress
intensity factor for a crack propagating in its own plane for the following conditions on
the crack faces

(J = ± 1t, r > 0:

(J = ± 0, 0 < r < c,t:

ay: = - ao: =0

ay: = - a~(7' ,,1t ).

(32)

(33)
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The problem formulated by (32) and (33) together with eqn (9) and the initial condition
that the solid is at rest prior to t =0 can be solved rigorously.

Let us consider the case that for a crack propagating in its own plane the new crack
faces are subjected to running anti-plane shear loads, i.e.

() = ± 11:, r > 0:

Uy: =c5(~ - V)H(X)H(t)

(34a)

(34b)

where c5 is the Dirac delta function. Let the stress intensity factor for this fundamental
problem be denoted by KZ/..v, I), i.e. KZ, = lim [21r(x - c,tW/2u,.: Iy-o, It then follows from

x-ep
superposition considerations that for a crack-face loading of the form - u,/:(x/t, ,,11:) the
stress intensity factor becomes

(35)

By the use of eqns (3), (4) and (35) we then find

K/I/"cF, t) = - (10 cos (CX1l: - ,,11: )/(cF) - Uo cos (CX1l: )[sin 1"11: II,,: - cos("1I: )Iy:] (36a)

where

reF
l(cF) =Jo KZ/..v, t) dv

reF [f<T A (v' ,,11:) ]
II: =Jo KZ/..v, t) • I:(v:~ dv' dv.

(36b)

(36c)

(37)

In eqn (36c), i =x and i = y. The integral given by (36b) is the stress intensity factor for
new crack faces, defined by O:s; x < c,t, loaded by uniform anti-plane shear stresses of unit
magnitude. The corresponding stress intensity factor can be solved independently and we
find l(cF) =A (cF), where

A (c) = _ 2(~)1/2[ c(cr - cF) ]1/2(CrI)I/2.
11: cr(cr+ C- cF)

In fact, A (c) as defined by (37) is the stress intensity factor for new crack faces 0 :s; x < cFt
which are loaded uniformly over (CF- c)t :s; X < c,t.

The evaluation of I:n and Iy: has to proceed with caution. Since near-tip stress fields
are singular the integration over v contains a square root singularity at v =O. This implies
that the integrand in the inner integration over v' is singular as (v')- 3/2 as v' ...0. Before
numerical integration, we have to reduce the order of the singularities. This can be done
by changing the order of integration, and evaluating the new inner integrals. We find

r<FAI:(V',,,1I:)[ ) ( ')]d ' )
II: = Jo (V')2 A(CF - A CF- V V + A(CF

f<T AI:(v', ,,11:) d '
X (')2 V.

<F V
(38)

Although AI:(v',"1I:) (V')-2 behaves as (V')-3/2 as v' ...O, the term [A(CF)-A(CF-V')]
goes to zero as v' ...0. Hence the first integral in eqn (38) contains only a square root
singularity at the lower limit, and it can be handled very well by a suitable Jacobi-Gaussian
type quadrature. For the second integral, the singular point, v' =0, is outside the interval
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of integration. Some care still has to be exercised for cases with a small value of CF, i.e.
for cases with the singular point very close to the end-point of integration. By using a
change of variable V" = I/v', the integrand in the second integral will decay as (V")-1/2 as
V" increases, which can again be handled very well by a suitable Jacobi-Gaussian type
quadrature.

The approximate stress-intensity factors given by eqn (36a) can now be compared with
the exact values that have been determined in Ref. [3]. For angles of incidence defined by
a =0 (normal incidence) and a =0.375, and for several values of the crack-tip speed, the
ratio of the approximate and exact elastodynamic Mode-III stress-intensity factors is
shown in Fig. 2. The ratio has been plotted versus the parameter /C, which defined the crack
kinking angle. It is noted that the error is small for small values of /c. The error increases
as /C increases, but it is always less than 10%.

CRACK KINKING INDUCED BY IN·PLANE WAVES

The fields generated by kinking of a semi-infinite crack upon diffraction of a
longitudinal stress wave defined by (13), or a vertically polarized transverse stress wave
defined by eqn (26), are extremely difficult to analyze. For the associated superposition
problems that the conditions on the crack faces are defined by eqns (24), (25) and eqns
(27), (28), respectively. Generally these crack propagation problems involve Mixed Mode
I-II fracture.

In principle it should be possible to solve in-plane crack kinking problems by taking
advantage of the self-similarity of certain field variables. This was attempted in Ref. [9].
Just as for the Mode-llI problem, Chaplygin's transformation was employed to reduce the
wave eqns (l1a) and (12a) to Laplace's equations in strips containing slits. These strips
with slits were mapped in two half-planes, and it was attempted to determine analytic
functions that satisfy the boundary conditions. Unfortunately, the analytic functions in the
two half-planes are coupled by complicated conditions along the real axes. To solve for
these functions it was necessary to reduce the coupling conditions to integral equations,
which must be solved numerically. So far, it has not been possible to devise an efficiently
converging method to obtain numerical results. That being the case it was decided to
explore the possibility of a simple approximate method.

For the anti-plane case it was shown that the near-tip field for a kinked crack can be
approximated by the field for a crack propagating in its own plane provided that the new
crack faces are subjected to approximate surface tractions. We now follow the same
approach for the in-plane problems.

For an incident longitudinal wave the appropriate boundary conditions for the

C 'C1-.88 t.

Ko1op

KUI ••

0.11

.01

(b) er ••375

O.
0.5 0.0 0.5

If If

GI' - o.

0.1I'0+----I---+---+--+---::l
0.0

0.115

(a)

Fig. 2. Ratio of approximate and exact elastodynamic Mode-III stress intensity factors vs Ie, for
an horizontally polarized transverse wave: (a) II =0, (b) II =0.375.
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superposition problem foHow from (24) and (25) as

8 = ± 11:, r > 0:

(1."'<:::: 0

8 =0 + 0 < r < ,../. Ii = -Ii .'I(X/l K1I:)-, t· y 6 ,

Ii.\" ::::: - 1i;'~{X / /, ,a[).

If the stress intensity factors are defined by the limits

K, = lim [211: (x - Co'.l)]"2IiYIY.o
s"'rp

KIt = lim [2n(x - Co'l)J I12
O'),x\y.o

:( ....,'1'''

we obtain

(39)

(40)

(4l)

(42)

(43)

(44)

and

where

O."mL(V) = - [1 - 2(CTlcL)2 sin2 (IXn)]A)'m,s(v) + (cried
x sin (2lX1t) sgn (K1t )A/''''(v), m = 1,2 (47)

n;:L(v) = - [J - 2(cT!Ct)2 sin2 (lX1I:)]A;:(v) + (CT/Ct)2 sin (2a1r:)

x sgn (1(11: )A~Q(v), m ::::: ),2 (48)

1 J1\ 11I,1 ::::: ~IA m.7 + A m,7) _ :JA m,7 - A m.1) cos 21(11: - N",7
Y 2"" y 2''' y yx

x sin 121(11: I, m = ), 2, y = a, S

1\~~7 =[ - ~(A.•m.r - A.•.'"·l) sin 121(11: I + A';;7 cos 2K1I: ]

x sgn (1(11:), m = 1,2, y == a, s.

(49)

(SO)

Here E(e) and F(c) are the Mode I and Mode n stress intensity factors corresponding
to, respectively, unit expanding norma) and shear tractions acting from x == (C,.- e)t to
x = co't. These stress intensity factors can be obtained from the work of Nuismer and
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Achenbach [10] as

E(c) = _ 2(~)li2 (CR- Ct.) I [C(C + CL - Ct.)]1/2 (51)
(CLt)1/2 1t c+cR-cFS+(l/c) CL(CL-CF) ,

where

(53)

(54)

(55)

(56a, b)

(57a, b)

The analysis for an incident vertically polarized transverse wave proceeds in a very
similar manner. Now the boundary conditions for the superposition problem are

(1,x = - (1~,(x It, K1t).

(J =0 ±, 0 < r < CFt: (1y =- (1/'(xlt, K1t)

(J = ± 1t, r > 0: (1 = 0.v

(1,,, =0

(58)

(59)

(60)

(61)

The stress intensity factors are obtained as

K/ . 2( k )E( ) ifF [E(cF)- E(CF - v»)- = - sm om - 1t CF - 2
(10 0 V

Kft 2( )F() ifF [F(c,) - F(c, - v)]- = - cos a1t - K1t CF - 2
(10 0 V

(62)

where

O,.mT(V) = -sin(2a1t)A,m,s(v)-cos(2lX1t)A,.m.D(v)sgn(K1t), m = 1,2 (64)

O;!(v) = - sin (2a1t)A;;J(v) - cos (2a1t)A;;D(v) sgn (K1t), m =1, 2. (65)

Expressions for A':j'1 and Aij'¥, m = 1,2, y = 0, s, are defined by (49), (50) and (19), except
that CL in (19) must be replaced by CT'
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The Mode I and Mode II stress intensity factors given by eqns (45), (46) and (62), (63)
have been computed as functions of K, for two values of a and for various values of the
ratio CF (crack propagation velocity)/cR (Rayleigh wave velocity; v = 1/4). A comparison
with the numerical results of Ref. [5] is shown in Tables 1-4, for both incident longitudinal
and incident vertically polarized transverse waves. Quite satisfactory agreement may be
noted.

Figures 3(a-d) show Mode I and Mode II stress intensity factors for incident
longitudinal waves. Corresponding results for incident vertically polarized transverse
waves are shown in Figs. 4(a-d). For most cases K/ is positive, but K/ is positive only
for a range of K roughly defined by - (1/2) + a < K < a. A negative Mode I stress intensity
factor would correspond to contact of the crack faces near the crack tip. The appearance
of a contact zone renders the Mode I stress intensity factor equal to zero, but its effect
on the Mode II stress intensity factor may be ignored under the assumption of smooth
frictionless crack faces. In the energy considerations of the next section, where use is made
of the Mode I and Mode II stress intensity factors, K, is set identically equal to zero
whenever the calculations show it to be negative.

ENERGY CONSIDERATIONS

The approximate elastodynamic stress intensity factors can be used to compute the
corresponding energy fluxes into the propagating crack tip. For combined Mode I-II-III
fracture, the energy flux into a crack tip may be written in the form [I]:

3

F CF {(I 2/ 2)I12K 2 (1 2/ 2)II2K 2 } CF K2= - 2 2R() - Ct' c L ,+ - CF Cr /I + 2 (1 2/ 2)1/2 1/1,
Jlcr CF Jl - CF cr

where

The Mode I-II and Mode-III cases will be considered separately.

Table I. Comparison of numerical values of the stress intensity factors according to Ref. [3J: (I)
and this paper: (2), for an incident longitudinal stress wave and IX = 0

cr/cR K 0 .0625 .125 .25 .375 .485

KL (1) 1.0070 .9870 .9291 .7241 .4625 .2482
1 .1----,.. (2) .9991 .9797 .9234 .7219 .4610 .2829a a (c I.tf)

(1) .8484 .8295 .7747 .5818 .3387 .1435

.3 (2) .8625 .8435 .71184 .5937 .3481 .1932

.5 (1) .7078 .6911 .6427 .4744 .2674 .1068

(2) .7023 .6856 .6373 .4695 .2637 .1356

(1) .5139 .5011 .4644 .3385 .1895 .0805
.7

(2) .5043 .4916 .4549 .3294 .1810 .0899

L
(1) O. .1287 .2465 .4131 .4564 .3952

Kll .1

a (c: t'" (2) O. .1257 .2410 .4047 .4458 .3848
o L J

(1) O. .1342 .2564 .4260 .4636 .3962
.3

(2) O. .1276 .2436 .4023 .4299 .3565

(1) O. .1245 .2373 .3909 .4202 .3551
.5

(2) O. .1197 .2277 .3711 .3887 .3155

(1) O. .1069 .2031 .3301 .3479 .2890

.7 (2) O. .1029 .1951 .3136 .3220 .2570
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Table 2. Comparison of numerical values of the stress intensity factors according to Ref. (3): (I)
and this paper: (2), for an incident longitudinal stress wave and IX =0.375

cFlcR K 0 .0625 .125 .25 .375 .485

K
L (1) .3761 .4486 .5189 .6277 .6614 .6178

.11
(2) .3733 .4466 .5179 .6246 .6424 .5684

a (CLt)~
a

(1) .3314 .4012 .4763 .6075 .6608 .6197
.3

(2) 3370 .4100 .4888 .6232 .6658 .5992

(1) .2880 .3526 .4257 .5579 .6131 .5702
.5

(2) .2859 .3518 .4265 .5600 .6087 .5507

(1) .2172 .2684 .3281 .4379 .4834 .4456
.7

(2) .2132 .2648 .3249 .4349 .4779 .4344

(1) -.2439 -.2364 -.2104 -.1069 .0375 .1584
L .1KU (2) -.2460 -.2384 -.2096 -.0913 .0764 .2152

---I

aa(cL~)l
(1) -.2356 -.2534 -.2461 -.1540 .0092 .1569

.3
(2) -.2336 -.2521 -.2430 -.1381 .0481 .2148

(1) -.2151 -.2461 -.24n -.1665 .0013 .1586
.5

(2) -.2143 -.2459 -.2475 -.1538 .0333 .2061

(1) -.1841 -.2199 -.2281 -.1566 .0006 .1505
.7

(2) -.1820 -.2179 -.2250 -.1463 .0227 .1817

Table 3. Comparison of numerical values of the stress intensity factors according to Ref. (3): (I)
and this paper: (2), for an incident transverse stress wave and IX = 0

c,/cR IC 0 .0625 .125 .25 .375 .485

Ki (1) O. -.381. -.7365 -1.2803 -1.5241 -1.4983

° (I: t)lS
.1

o L
(2) O. -.3840 -.7397 -1.2693 -1.4607 -1.3524

(l) O. -.3179 -.6086 -1.0231 -1.1571 -1.0589
.3

(2) O. -.3322 -.6347 -1.0558 -1.1560 -1.0130

(1) O• -.2648 -.5021 -.8104 -.8479 -.7102
•5

(2) O. -.2710 -.5133 -.8229 -.8452 -.6830

(1) O• -.1938 -.3622 -.5558 -.5248 -.3790
• 7

(2) O. -.1950 -.3656 -.5597 -.5239 -.3699

(1) 1.3369 1.2940 1.1695 .7321 .1837 -.2586

til
.1

(2) 1.3485 1.3005 1.1610 .6680 .0466 -.5429

0
0

(I:Lt)lS
(l) 1.2351 1.1897 1.0590 .6119 .0871 -.2986

.3
(2) 1.2247 1.1755 1.0339 .5468 -.0295 -.5266

(1) 1.0823 1.0369 .9070 .4725 -.0095 -.3290
.5

(2) 1.0784 1.0299 .8910 .4258 -.0906 -.4656

(1) .8920 .8493 .7278 .3297 -.0844 -.3199
.7

(2) .8817 .8373 .7110 .2972 -.1315 -.3791
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Table 4. Comparison of numerical values of the stress intensity factors according to Ref. [3]: (I)
and this paper: (2). for an incident transverse stress wave and IX =0.375

crlcR K 0 .0625 .125 .25 .375 .485

(1) .5700 .7357 .8394 .8489 .6495 .4078

~
.1

(2) .5659 .7329 .8375 .8435 .6303 .3677

aO(CLt)~ (1) .5166 .6640 .7357 .6391 .3037 -.0401
.3

(2) .5253 .6793 .7546 .6560 .3127 -.0303

(l) .4591 .5913 .6462 .5108 .1369 -.2282
.5

(2) .4557 .5905 .6467 .5104 .1367 -.2179

(1) .3526 .4559 .4942 .3653 .0415 -.2621
.7

(2) .3462 .4500 .4884 .3590 .0355 -.2630

~I
(1) -.6514 -.4853 -.2901 .1015 .3697 .4402

.1

aO(CLt)~
(2) -.6566 -.4902 -.2908 .1153 .3961 .4693

(1) -.6471 -.4303 -.1794 .3027 .5820 .5812
.3

(2) -.6414 -.4282 -.1790 .2986 .5617 .5333

(l) -.6041 -.3750 -.1111 .3931 .6669 .6314
.5

(2) -.6018 -.3759 -.1121 .3846 .6322 .S561

(1) -.5265 -.3128 -.0634 .4083 .6516 .5947

.7 (2) -.5206 -.3100 -.0636 .3968 .6135 .5198

Table 5. Comparison of exact and approximate kinking angle and crack-tip speed for F:..". with
corresponding exact and approximate values of F:'l • for various values of the angle of incidence

of a horizontally polarized transverse wave

crlcT *a K F
ax

exact O. .62 .765

O.
• ppr. O• .62 .765

exact .145 .67 .687

.125
eppr. .135 .675 .683

exact .27 .705 .644

.25
.ppr. .265 .7l5 .633

exact .395 .735 .610

.375

.ppr. .385 .745 .591

exact t.5 .76 .570

.5
.ppr. t.5 .78 .545
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(e)

(a) (b)
0.0

-0.5 0.0 0.5K K

0.5 003

•• O. • ••375

-!L -!L
"oCcLt)'/l ".cCI.t)'/I

0.0 0.0

K 0.5
K

0.0
-0.3t-:--+---t----iI--'i--+--+---iI--+--+-~

-0.50.50.0
-0.5+--+---t----iI--'i--+---t----iI--'i--+--I

-0.5

Fig. 3. Elastodynamic stress intensity factors vs K, v .. 0.25: (a) Mode-! SIF for an incident
longitudinal wave, ex .. 0; (b) same as (a) but ex .. 0.375; (c) Mode-II SIF for an incident longitudinal

wave, ex .. 0; (d) same as (c) but ex .. 0.375.

Let us define F* by the relation

(68)

Since F* is a quadratic fonn of the stress intensity factors, the approximation to F* will not
be as good as the one for the stress intensity factors. For the Mode-JIJ case a comparison
of approximate and exact results is shown in Fig. 5(a-b) for ex =0.0 and ex =0,375.

It is of interest to compute the values ofcFand IC at which F* attains its maximum value
with respect to variations of CF and IC. Results are shown in Tables 5 and 6. The method of
this paper appears to yield quite accurate values for IC and CF at which F:.,.., will occur. For
the Mode III case, the exact and approximate results are compared in Table 5 for several
angles of incidence. It is noted that the kinking angle and the crack-tip velocity at which F*
achieves its maximum value, increase as ex increases. For an incident L-wave and an incident
TV-wave, Tables 6(a, b) list the kinking angle and the craCk-tip speed for F:.,.." computed
on the basis of the approximate results.

CONCLUDING COMMENT

For a crack which has kinked under the influence of an incident stress jump, this paper
gives approximate values for the elastodynamic stress intensity factors. The energy
criterion suggests that the crack will choose to propagate in the direction and at the
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2.0-r--------------....,

-2.0+--1-.....,1--+--+-+--+---+-+--1----.,
-0.5 0.0 0.5

1.01T""--------------,

(b)

Ie

1.0

O.O+------~~~.....:.:..=---__::J

-1.0

2.0-r--------------....,

(a)

• - .375

Ie

-1.01+--+-+--+---+-+--+---"1--+--+-1
-0.5 0.0 0.5

(d)

0.5
Ie

0.0
-1.O,+--+-+--+-l--+----i-+--+-+_~

-0.5

(c)

Fig. 4. Elastodynamic stress intensity factors vs Ie, v '"' 0.25; (a) Mode-I SIF for an incident
vertically polarized transverse wave, ex = 0; (b) same as (a) but ex '"'0.375; (c) Mode-II SIF for an

incident vertically polarized transverse wave, ex =0; (d) same as (c) but ex '"' 0.375.

1.0

~
F.

0.11

.01
• - .375

(b)

o.e
0.5 0.0

It
0.5

Ie

o.e+---+---+---l-----it-----i
0.0

(a)

Fig. 5. Ratio ofapproximate and exact energy fluxes into the crack-tip, plotted vs Ie, for an incident
horizontally polarized transverse wave: (a) ac = 0, (b) ac =0.375.
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Table 6. Kinking angle and crack-tip speed for F:"" for various angles of incidence of-{a) a
longitudinal wave, and (b) a vertically polarized transverse wave

(a)

a " cF/cR •Fmax

O. O. .56 .358

.125 .120 .585 .344

.25 .25 .615 .326

.375 .38 .67 .301

•5 t.505 .735 .264

(b)

CF!CR
•a K Fux

O. O. .675 .841

.125 .135 .73 .651

.25 :1:.265 .77 .539

.375 - 135 .745 .575

.
.5 O. .74 .581

velocity for which the energy flux into the crack tip assumes a maximum value. For a
number of angles of incidence, Tables 5 and 6 list the values of the kinking angles and
the crack-tip speeds at which the flux of energy into the propagating crack tip achieves
its maximum value. A rigorous application of the energy criterion would, however, require
the elastodynamic stress intensity factors for time-varying kinking angles and crack-tip
speeds. These are not available at the present time.

Acknowledgement-This work was carried out in the course of research sponsored by the Air Force Office of
Scientific Research under Grant AFOSR 78-3589-E.

REFERENCES
I. J. D. Achenbach, Wave propagation, elastodynamic stress singularities and fracture. In Theoretical and

Applied Mechanics (Edited by W. T. Koiter), North-Holland, Amsterdam (1976).
2. P. Burgers and J. P. Dempsey, Two analytical solutions for dynamic crack bifurcation in antiplane strain.

J. Appl. Mech. 49, 366-370 (1982).
3. J. P. Dempsey, M. K. Kuo and J. D. Achenbach, Mode-III crack kinking under stress-wave loading. Wave

Molion 4, 181-190 (1982).
4. P. Burgers, Dynamic propagation of a kinked or bifurcated crack in antiplane strain. J. Appl. Mech. 49,

371-376 (1982).
5. P. Burgers, Dynamic kinking of a crack in plane strain. Int. J. Solids Structures 19, 735-752 (1983).
6. J. D. Achenbach, Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973).
7. J. D. Achenbach, Dynamic effects in brittle fracture. Mechanics Today (Edited by S. Nemat-Nasser), Vol.

I, Chap. I, pp. I-57. Pergamon, New York (1974).
8. L. B. Freund, The analysis of elastodynamic crack tip stress fields. Mechanics Today (Edited by S.

Nemat-Nasser), Vol. 3, Chap. II, pp. 55-9I. Pergamon, New York (1976).
9. J. D. Achenbach and R. P. Khetan, Kinking of a crack under dynamic loading conditions. J. Elasticity 9,

113-129 (1979).
10. R. J. Nuismer, Jr. and J. D. Achenbach, Dynamically induced fracture. J. Mech. Phys. Solids 10, 203-222

(1972).


